Artificial Immune System
inspired by Human Immune System

Bait a Trap: Introducing Natural Killer Cells to
Artificial Immune System for Spyware Detection

Complex Adaptive Systems Seminar
Alireza Tashvir
Outline

• Human immune system
• Artificial immune system
• What is Spyware
• Proposed mechanism
• Results
• Future of AIS
Human Immune System

- Its goal
 - Protect our body against foreign invaders and infectious

- Important players
 - Lymphocytes (B-Cells, T-Cells, Natural Killers (NK))

- How it works (work steps)
 - Recognize
 - Attack
 - Memorize

- Why it is important to investigate
 - Powerful information processing capabilities
 - Highly parallel system
 - Use learning, memory and retrieval to solve recognition and classification
How HIS works

- Try to recognize all of the body cells
 - Classified them as self and non-self
 - Non-self are further categorized by type of defensive mechanism
How HIS works

• Encountering antigens use two different approaches:
 • Innate mechanism
 • Non-specific response (defense)
 • Adaptive (acquire) mechanism
 • Specific response by applying hyper mutations of different genes
 • Clonal expansion

• After successful defense
 • Memorizing the antigens and the location they are exposed
Artificial Immune System (AIS)

- Inspired metaphors from HIS
 - Recognition (Self vs Non-self)
 - Feature extraction (by filtering released proteins - cytokine)
 - Diversity (by hyper mutation of different genes)
 - Learning
 - Memory
 - Decentralize controlling (vs nervous system)
Artificial Immune System (AIS)

• Applications

 • Machine learning (e.g. Pattern recognition, Data clustering)
 • Computer security - Malware detection (Virus, Spyware, ...)
 • Fault diagnosis and tolerance
 • Robotics
 • Optimization
 • Scheduling
Spyware (and current popular detection approaches)

• Spyware is designed to make money by stealing users’ privacy or confidential data, rather than harm the computer systems or self-reproduce in the network
 • Hiding their presence (hide its files and registries)
 • Hiding their behaviors (pretend their behaviors are legitimate)

• Regular detection approaches
 • Signature-based
 • Detect known spywares with high degree of accuracy
 • Unable to detect novel ones
 • Behavior-based
 • Can detect partial new spyware with acceptable accuracy
Natural Killers (NKs)

• Powerful weapons to find and kill the latent viruses (Viruses which decreased their activity to escape the attacks performed by HIS)

• They provide some baits to encourage latent viruses to exhibit their activities more obvious (→ can be recognize by immune cells)

• NKs mechanism is introduced by the authors of the article to facilitate the latent spyware detection process
Natural Killers (NKs)

• **Mechanisms**
 • Have different surface receptors
 • These receptors regulate the cell functions by signal transduction

• **Taxonomy of receptors**
 • Inhibitory receptors (IRs)
 • Activating receptors (ARs)
Natural Killers (NKs)

- How NKs decide to kill or leave the binding cell
 - Based on the balance between inhibitory and activating signals
 - If the summation of these signals is negative
 - The cell is left and categorized as a normal cell
 - Otherwise
 - The cell is killed since it is recognized as an infection
 - NK produce proteins (e.g. perforins) to split the target cell cause to expose the virus
Artificial NK model

- Artificial inhibitory signals from processes, files, and registries
- Artificial activating signals from key logging, information collecting and leaking
- Artificial induction cytokine generating artificial user activities in computer systems
Artificial cell representation

• Artificial Natural Killer (NK)
 • NK(NKRs, Fitness, AV, Status, IC)
 • NKRs: Natural Killer Receptors (Inhibitory receptor - IR / Activating receptor - AR)
 • Fitness: Cell adaptability is measured by its fitness (higher fitness -> more adaptable)
 • AV: Activating value (cumulative value increasing by AR signals and decreasing by IR signals)
 • Status: which initially is inactive. If exceeds a threshold, the NK status changes to active
 • IC: each NK can produce a specific type of IC. Since each spyware exhibit different behavior
Artificial cell representation

• Artificial Natural Killer Receptor (NKR)
 • NKR(Type, Ligand, Affinity, Weight)
 • Type: Shows if it is IR or AR
 • Ligand: Shows which source is bound to the receptor (e.g. file and registry expressions of a program)
 • Affinity: determines the value of the perceived signals
 • Weight: for IR, Weight < 0 and for AR, Weight > 0
Recognition and response algorithm

• forall the signals do
 • forall the NKs do
 • set the affinity of all NKRs to 0;
 • get signal s;
 • find all NKRs ($mNKR$s) that match s;
 • forall the $mNKR$s do
 • $mNKR$.affinity = s.value;
 • end
 • calculate the AV of the NK;
 • if $AV \geq TA$ (activating threshold) and NK.status == inactive then
 • NK.status = active;
 • end
 • end
• end

Input: Signals (both inhibitory and activating)
Output: The status of NK (active or inactive)
Recognition and response algorithm

• The AV is computed by:

\[AV_{after} = AV_{before} + \sum m_{NKR} \text{Affinity} \times \text{Weight} \]

• Once NK activated, generates artificial user activities by IC
 • If spyware does not detect it as a fake activity
 • responds to it
Recognition and response algorithm

- Artificial induction cytokine (IC)
 - Is defined as a series of bogus user activities
 - $IC = \{UA_1, UA_2, ..., UA_n\}$
Recognition and response algorithm

• Artificial IC properties
 • \(IC(\text{\textit{K}_{UA}}, R, C_0, T_I, T_N, f) \)

\(\text{\textit{K}_{UA}} \): kind of IC (e.g. keystroke, file operation, network request)
R: Cycle number (shows induction and non-induction period)
\(C_0 \): initial concentration of IC in the beginning of each cycle
\(T_I \): time span of each induction period
\(T_N \): time span of each non-induction period
\(f \): function of the IC concentration and time in induction period
Evolution process (NK lifecycle)

- Fitness is computed by:
 - $\text{Fitness}_{after} = \text{Fitness}_{before} \times (1 - C_{\text{decay}}) + \sum_{m\text{NKRS}} \text{Affinity} \times |\text{Weight}|$
 - C_{decay}: attenuation coefficient ($0 < C_{\text{decay}} < 1$)
Experiments with real spywares

<table>
<thead>
<tr>
<th>Functions/Features</th>
<th>Actual Spy V3.0</th>
<th>Spybot V1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keystroke logging</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>File operation logging</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Internet traces logging</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Send logging report</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hiding appearance</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hiding behavior</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Four different ICs are introduced

• $IC_{\text{keystroke}}$: Simulate user keystroke
• IC_{FileOper}: Simulate the creation, deletion of files
• IC_{WebSurf}: Simulate opening web pages in a browser
• IC_{HTTPReq}: Generate HTTP requests
Experiment’s results

(a) Actual Spy ($IC_{FileOper}$)

(b) Spybot ($IC_{Keystroke}$)
Experiment’s results

The changes in number of all kinds of ICs in S1 (Actual Spy)
Experiment’s results

The changes in number of all kinds of ICs in S2 (Spybot)
Thank You