
Assignment 2: Design strategies for a
tournament in Iterated Prisoner’s Dilemma

ENM140, Game theory and rationality 2018

Contents

1 Overview 1

2 How to get started 2
2.1 Develop your strategies in develop-strategy.html 2
2.2 More examples in js/strategies.js . 2
2.3 Using the action history in your strategies 3
2.4 Using state variables . 4
2.5 Adding more opponents in js/opponents.js 5
2.6 Testing the performance against a population 5
2.7 Replicator dynamics simulation . 5
2.8 Learning more Javascript . 6

3 How to submit 6

1 Overview

With this assignment, we organize a competition where the course participants contribute
strategies for playing the iterated prisoners dilemma. In the competition each strategy
will play against all other strategies (including against itself). Your job is to implement
the strategies as functions in Javascript. We have written all the code for running the
game, so you only have to write a set of functions that return a value corresponding to
“defect” or “cooperate”.

We will play three versions of the game:

1. Played for 10 rounds. Submit 3 strategies for this version.

2. Played for 200 rounds. Submit 3 strategies for this version.

3. Played for 200 rounds with a mistake rate of 2%. This means that your chosen
action will be used with 98% probability and otherwise changed to the other action.
Submit 1 strategy for this version.

We will run the game with payoffs udd = 1, udc = 5, ucd = 0, ucc = 3, where udd is the
payoff for player 1 if both defect, udc is the payoff if player 1 defects and player 2

1

cooperates, etc. The winning strategy in each version of the game will the one who gets
the highest average payoff across all the matches against other strategies, including
themselves. (All the 10-round strategies will play in one tournament, all the 200-round
strategies in another, and all the 200-round strategies with mistakes in a third.)

You are encouraged to work together in groups and, if you wish, to try your strategies
against each other (see Section 2.5 and Section 2.6). However, everyone must finally
submit their own set of strategies as described in Section 3.

Please read these instructions carefully before starting your work.

2 How to get started

First of all, download a zip file with the code from the course homepage. Unpack the zip
file and you will have a folder called ipd-tournament with a few different things in it:

• The file develop-strategy.html is the best place to start developing your own
strategies. More about this in a moment.

• The file test-all.html and the file js/strategies.js are for testing and
submitting your work. More about this in Section 3.

• The files js/game.js, js/opponents.js and all the other files contain the code
that actually runs the game. You don’t have to read these unless you want to.

2.1 Develop your strategies in develop-strategy.html

Open the html file develop-strategy.html in a web browser. We have successfully
tested the code on Firefox and Chrome. It might work in other browsers, too, but Firefox
and Chrome are more likely to work.

The page should show some Javascript code which implements the tit-for-two-tats
strategy. You can change the strategy code, the number of rounds played, and the
mistake rate. Run the code by clicking the Run button or pressing Ctrl+Enter on your
keyboard. You should then see tables of results below the strategy code editor.

You can use this application to test your strategies against some opponent strategies. Just
change the code in the code editor and run again to see results.

2.2 More examples in js/strategies.js

To see more examples of how strategies can be implemented, open the file
js/strategies.js in a text editor. This file defines strategies named like
examplecidN variant , where N ∈ {10, 200} and variant ∈ {a, b, c, mistakes}. This is
where you should insert your own strategies. The numbers indicate how many rounds will

2

http://studycas.com/c/courses/gtr

be played with the strategy and the letters a, b, c identify your three different strategies
in the first two variants of the game. The strategy ending in 200mistakes is the one that
will be used in the game with 2% mistake rate.

2.3 Using the action history in your strategies

Look closely at the chooseAction function in the example strategies in
js/strategies.js (e.g. “always cooperate”, “always defect”, “tit-for-tat”, etc). Note that
they are all functions that take three arguments (me, opponent, t) and always return
either 0 (= defect) or 1 (= cooperate). The argument t will be an integer 0 ≤ t ≤ (N − 1)
representing the current “time” or round number. The arguments me and opponent will
be arrays of the form

me = [m0,m1, . . . ,mt−1, 0, 0, . . .] ,

opponent = [o0, o1, . . . , ot−1, 0, 0, . . .] ,

where mt is “my” action at time t and ot is the opponent’s action. The arrays me and
opponent will always have N elements in an N -round game, but the elements at position
t and later will always be zero. Note that Javascript arrays are zero-indexed, i.e., you
should think of time as starting at t = 0 and running until t = N − 1 in an N -round game.

For example, a tit-for-tat strategy can be mathematically defined as{
m0 = 1,

mt = ot−1, t = 1, 2, 3,

At time t = 0, no history has passed, and the tit-for-tat strategy generously starts with
cooperation, m0 = 1. In all following time steps, the tit-for-tat strategy always copies
what the opponent did last.

Your job in the chooseAction(me, opponent, t) function is to return a value which
will then become the value of me[t]. In Javascript, the choice of action in tit-for-tat
strategy can be formulated as follows:

1 // Tit for tat
2 function chooseAction(me, opponent , t) {
3 if (t == 0) {
4 return 1; // cooperate in first round
5 } else {
6 return opponent[t-1]; // otherwise copy opponent
7 }
8 }

Note that if you want to use history, it only makes sense to use it at time t = 1 and later,
since all elements in me and opponent will be 0 when t = 0. Use something like the
if-clause above to check that t > 0.

A few specific hints for how to use the history:
1 // the opponent ’s action in the previous round
2 opponent[t-1]
3

3

4 // your action in the previous round
5 me[t-1]
6

7 // all your previous actions in an array of length t ,
8 // i.e., [m_0 , m_1 , ..., m_{t-1}]
9 me.slice(0, t)

10

11 // all the opponent ’s previous actions in an array of length t
12 opponent.slice(0, t)

2.4 Using state variables

For some strategies you might want to keep track of some state in your strategy. This can
be inconvenient or impossible to do without some additional variable, so we allow you to
define variables in the outer function that wraps each of your chooseAction functions.
All the state variables that are defined just before the chooseAction function are
(re)initialized before each game, so there is no memory between games. You must define
your state variables using the keyword var, for example as follows:

1 strategies[cid + ’10a’] = function () {
2 var oneStateVariable = 0;
3 var anotherOne = true;
4

5 function chooseAction(me, opponent , t) {
6 // choose actions in here , possibly
7 // using and/or changing the state variables
8 }
9

10 return chooseAction;
11 }

This is the reason why each strategy is a function inside another function: the outer
function initializes your state variables (which only the inner function chooseAction can
access), and then the outer function returns the inner function which actually makes the
choices in each time step.

There is an example in the js/strategies.js file that may help to explain this:
1 strategies[cid + ’200b’] = function () {
2 // evil is a state variable for this strategy.
3 // The initialization code (’var evil = false;’’) will be run
4 // before each game , so the variable evil will always equal
5 // false when the game starts.
6

7 var evil = false; // start out as not evil
8

9 function chooseAction(me, opponent , t) {
10 // This strategy uses the state variable ’evil ’.
11 // In every round , turn evil with 5% probability.
12 // (And remain evil until the 200 rounds are over.)
13 if (Math.random () < 0.05) {
14 evil = true;
15 }
16

4

17 // If evil , defect
18 if (evil) return 0;
19

20 return 1; // and cooperate otherwise
21 }
22 return chooseAction;
23 }

What this means is the following: The strategy is to cooperate unconditionally, unless the
agent suddenly turns madly evil. The state variable evil is initialized as false. In each
round the state variable evil is set to true if it is already true or if a random number
r ∼ Uniform(0, 1) < 0.1, otherwise it is kept false. In other words, once the strategy
goes evil it will never go back. The strategy returns 0 (defect) if evilness has struck and
1 (cooperate) otherwise.

2.5 Adding more opponents in js/opponents.js

The opponents your strategy plays against in the develop-strategy.html environment
are all defined in js/opponents.js. If you want to test your strategy against more
strategies, feel free to make more. Just copy one of the example strategies, rename it to
something else and implement your own opponent score. Note that opponents are
implemented just like your own strategies, so you can develop your new opponents in
develop-strategy.html and then copy them into the js/opponents.js file.

When you make changes in js/opponents.js, you must reload the page before the
changes take effect.

2.6 Testing the performance against a population

The winning strategy in each category (10 rounds, 200 rounds, 200 rounds with mistakes)
is the one with highest average score against a population of other strategies, including
against itself. To try out the performance of your strategies with this metric, use the file
run-all-vs-all.html to check the average score of strategies in a population. There are
some explanations in the file.

2.7 Replicator dynamics simulation

Check the file replicator-dynamics.html to test a set of strategies against each other
in a replicator dynamics simulation. There are some further explanations in the file.

5

2.8 Learning more Javascript

If you have not programmed before in Javascript, you can probably learn a few things by
studying the examples in the js/strategies.js file and the js/opponents.js file.

An excellent resource for learning Javascript is the Mozilla Developer Network (MDN)
website: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide.

3 How to submit

Work on your strategies as much or little as you want. Collect your finished strategies in
the file js/strategies.js. You may use the same strategy in several cases, but all the
seven functions (10a, 10b, 10c, 200a, 200b, 200c, 200mistakes) must be defined. (Make
sure that you change the names: in the testing environment in develop-strategy.html,
your strategy must be named ’testStrategy’, but in the file with finished strategies
they must be named things like cid + ’200b’.

When you are done, follow these instructions to test your strategies and submit them:

1. Open the js/strategies.js file and replace the example strategies by your own
strategy functions. It should work perfectly well to everything but the name
’testStrategy’ from the develop-strategy.html page where you developed the
strategies.

2. Replace the string ’examplecid’ for your own cid near the top of
js/strategies.js.

3. Save the js/strategies.js file.

4. Open the file test-all.html in a web browser (preferably Firefox or Chrome).

5. As soon as you open this file, your strategies will be played against all the test
strategies in js/opponents.js. If everything goes well you should have a table full
of success reports. If there are any problems, you will see some more or less helpful
error messages. If there are error messages problem, try to fix it and then reload the
file by clicking a refresh button, or pressing Ctrl+R, Cmd+R, F5, or whatever
keyboard shortcut is used on your system.

6. When the testing page says success on everything, you are done. Please go to
https://www.dropbox.com/request/D2H99U6PBQItrLCGsGzv and submit your
strategies.js file. Make sure you leave your name and student email address in
the submission form.

6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://www.dropbox.com/request/a6JVGd5bVf42iTXb3RgI

	Overview
	How to get started
	Develop your strategies in develop-strategy.html
	More examples in js/strategies.js
	Using the action history in your strategies
	Using state variables
	Adding more opponents in js/opponents.js
	Testing the performance against a population
	Replicator dynamics simulation
	Learning more Javascript

	How to submit

