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In recent years, the concept of self-organization has been used to understand collective behaviour of
animals. The central tenet of self-organization is that simple repeated interactions between
individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from
patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity
at the level of the individual units of which the system is composed. The suggestion is that biological
structures such as termite mounds, ant trail networks and even human crowds can be explained in
terms of repeated interactions between the animals and their environment, without invoking
individual complexity. Here, I review cases in which the self-organization approach has been
successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail
networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish
schools have all been accurately described in terms of individuals following simple sets of rules.
Unlike the simple units composing physical systems, however, animals are themselves complex
entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of
dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone.
I argue that the key to understanding collective behaviour lies in identifying the principles of the
behavioural algorithms followed by individual animals and of how information flows between the
animals. These principles, such as positive feedback, response thresholds and individual integrity, are
repeatedly observed in very different animal societies. The future of collective behaviour research lies
in classifying these principles, establishing the properties they produce at a group level and asking
why they have evolved in so many different and distinct natural systems. Ultimately, this research
could inform not only our understanding of animal societies, but also the principles by which we
organize our own society.

Keywords: self-organization; animal groups; societies; collective behaviour
1. INTRODUCTION
I am sitting at my office window watching the students

come out of the lecture theatre. They queue to buy

coffee. When served, they leave in groups of three or

four and edge towards the café’s tables, looking

nervously at each others faces to ascertain some weak

preference for a seat in the sun or shade. Once the

unspoken decision is made they sit down quickly, sip

their coffee and begin to relax, the morning’s lectures

behind them. Faces light up and their conversation

turns in directions I cannot possibly imagine.

For those five or so minutes after the lecture the

students’ behaviour is almost entirely predictable. The

picture I have painted is not simply something I see

every morning, but is familiar to university campuses

all over the world. Different personal histories and

drink preference aside, the pattern of waiting our turn,

making joint, unspoken decisions about where to sit

and relaxing together after a period of concentration is

familiar to us all. Every day we see examples of groups

of autonomous individuals behaving collectively in a

manner that can be described in a few simple words.
umpter@zoo.ox.ac.uk
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Although familiar to us all, a few students standing
in a queue probably qualifies as one of the least

spectacular examples of collective behaviour of human

or animal groups. It is difficult to know where to start

when choosing the most spectacular. A flock of birds

twisting in the evening light; a fish school wincing at the

thought of a predator; the cram to leave an under-
ground station; ants marching in an endless line; the

stop and start traffic jams; the quiet hum of a honey bee

hive; the pulsating roar of a football crowd; a swarm of

locusts flying across the desert; or even the bureaucracy

of the European Union (figure 1). In all these

examples, the individual is submerged as the group
takes on a life of its own. The individual units do not

have a complete picture of their position in the overall

structure and the structure they create has a form that

extends well beyond that of the individual units.

There is a sense in which all these collective patterns

are regular and even predictable. In the hustle and
bustle of a busy street we can forget the complex

reasons each of us had for shopping on this particular

Saturday morning. Brought together to search for a

roost, the migrating birds do not reflect on the long

day’s flight behind them. The submergence of the

individual brings a new order to the group. Never-
theless, understanding how coordinated patterns
q 2005 The Royal Society
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Figure 1. Examples of collective animal behaviour. (a) Fish milling (reproduced with permission from Philip Colla,
oceanlight.com). (b) The entrance crater to a nest of the ant Messor barbarus (from Theraulaz et al. 2003). (c) Traffic flow in Paris
(reproduced with permission from Anthony Atkielski). (d ) A bifurcation in a Pharaoh’s ant trail (reproduced with permission
from Duncan Jackson). (e) A Mexican wave at an American football game (taken from Farkas 2002). ( f ) A band of marching
locusts (reproduced with permission from Iain Couzin).
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emerge from a mass of interactions between individuals
poses a difficult problem. The regularity of collective
animal behaviour leaves us feeling that there must be
some unifying laws which govern these different
phenomena. But, while the line of commuting cars
might remind us of a trail of ants, are there deep
similarities which connect them? If so, can we
determine a set of principles that allow us to classify
and understand collective animal behaviour?

It was on the basis that ‘experimental evidence, as
well as daily observation, show that systems involving a
large number of interacting subunits can present, under
certain conditions, a marked coherent behaviour
extending well beyond the scale of the individual
subunit’ that Nicolis & Prigogine (1977) wrote ‘Self-
organization in Nonequilibrium Systems’. Their desire
was to go beyond simple analogies and pin down a
rigorous theory of these ‘self-organized’ systems. Such
a theory should explain how complex structures arise
from repeated interactions between the individual
units. It should show why certain structures are created
and persist and explain the similarities between systems
at very different scales and levels of biological
organization. For example, could the flow of traffic be
Phil. Trans. R. Soc. B (2006)
described by the mathematics of fluid flow? And if this
was the case could we make general statements about
the flow of any type of matter, be it swarms of locusts,
crowds leaving football grounds or water running down
the drain.

Nicolis and Prigogine were partially successful in
their enterprise. They showed that many of the
mathematical equations used for describing chemical
reactions could equally well be considered as models
of, for example, predator–prey interactions or the
building behaviour of termites. By applying the same
mathematical models to very different systems they
argued for a formal correspondence, above that of mere
analogy, between the modelled systems.

Nicolis and Prigogine were not alone in their belief
that many aspects of collective behaviour could be
modelled mathematically, and thus direct and useful
comparisons drawn between diverse systems. The
preceding decades had seen books by Ashby (1947),
Wiener (1948) and von Bertalanffy (1968) all of which
aimed at providing a framework for the study of
collective behaviour. Von Bertalanffy argued for the
existence of general growth laws of social entities as
diverse as manufacturing companies, urbanization and

http://rstb.royalsocietypublishing.org/
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Napoleon’s empire. His approach was ‘empirico-
intuitive’, in that he used observations on the growth
of organisms and applied the principles to other
systems. However, neither von Bertalanffy, Nicolis
and Prigogine nor any of the other early pioneers of
self-organization experimentally validated the models
they proposed for collective phenomena in humans or
animals.

There was good reason for the lack of exper-
imental testing of the theories of self-organization.
For most collective phenomena involving humans it
is simply impossible to perform experiments. How
do you do an experiment to test a hypothesized
model for the growth of Napoleonic empires? Even
for the collective behaviour of animals, such as
flocking birds, the collection of field data requires a
large number of cameras and sophisticated computer
tracking software. However, around the time of
Nicolis & Prigogines’ book another member of
their Brussels group, Jean–Louis Deneubourg,
began to develop and test a theory of self-
organization in social insect societies. Based on the
assumption that insect societies follow simple
behavioural rules, Deneubourg’s approach was to
write down mathematical models of how colonies of
ants forage and termites build mounds (Deneubourg
1977; Deneubourg & Goss 1989). By conducting
laboratory experiments where the insects were
constrained to relatively simple environments,
Deneubourg and his colleagues were able to test
and, in some cases, validate these models (Camazine
et al. 2001).

Similar approaches, in many cases developed
independently of the Brussels’s school, have been
applied to understanding the collective behaviour of
fish, cockroaches, humans and other animals. Nicolis
and Prigogine’s basic observation, that individuals
following simple behavioural rules can produce
complex behavioural patterns, has not only proved a
useful idiom for describing a whole range of collective
phenomena; even more importantly, the fact that these
simple rules can be encapsulated in mathematical
models has meant that clear, testable predictions
about the collective behaviour of animal groups and
societies can be made. Making and testing these
predictions has become the field of ‘self-organization’.
2. EXAMPLES OF SELF-ORGANIZATION
(a) Ant trails
The canonical example of a self-organized animal
behaviour is ant pheromone trails. Many species of
ants deposit chemicals, known as pheromones, to mark
the route from food to nest (Wilson 1971). After
finding a food source and feeding, an ant returns to the
nest, pausing at regular intervals on its way to leave
small amounts of pheromone. The ant then makes
repeated trips from nest to food source, often leaving
more pheromone to reinforce its trail. Other ants,
which were previously unaware of the food source and
encounter the trail, will follow the trail and find the
food source. Once they have collected food, these
follower ants also leave pheromone on their return
journey. Through this positive reinforcement, the
Phil. Trans. R. Soc. B (2006)
pheromone trail builds up and after a short time we
see a steady trail of ants walking between food and nest.
Pheromone trails are formed purely on the basis of local
information. They are started by a single individual or a
small group of ants responding to the presence of food
and they are reinforced by ants that encounter and
follow the trail.

Despite their simplicity, pheromone trails can be
used to solve the problem of directing the majority of
ants on the shortest route from food to nest. For
example, Beckers et al. (1992) presented starved
colonies of the ant Lasius niger with two alternative
bridges between food and nest, then measured the
number of ants using the two bridges 30 min after the
first ant had found food. When one of the bridges was
only 40% longer than the other, over 80% of the ants
took the shorter bridge in 16 out of the 20 experimental
trials. Individual ants make little or no comparison of
the two bridges, instead the slightly longer trip time
means that pheromone is laid less rapidly on the longer
bridge. Thus, when trail following ants make the choice
between two bridges they detect a higher concentration
of pheromone on one of the bridges, the shorter one
(Beckers et al. 1993). The shorter bridge is thus chosen
with a higher probability by the follower ants and when
these ants return home they further reinforce the
shortest path. Since pheromone continually evaporates
on both paths but is more strongly reinforced only on
the shortest path, the ants rapidly concentrate their trail
on the shorter path.

While lab experiments are usually on the scale of
tens of centimetres, in nature some species of ants build
trail networks on the scale of kilometres or even
hundreds of kilometres (Hölldobler & Wilson 1990).
Using computer simulations, Deneubourg et al. (1989)
showed that the complex trail networks created by
army ants during a raid could be reproduced by the
simple rules for pheromone laying and following found
in the double bridge experiments. By manipulating the
food distribution, Franks et al. (1991) showed that the
model accurately predicted network structure. It is in
this sense we call ant foraging self-organized: ants
follow only local rules regarding the laying and
following of pheromone, but the resulting trail
structure is built on a scale well beyond that of a single
ant.

To be more specific, we can say that ant trails result
from positive feedback. The one ant which first finds
the food starts a feedback loop as more and more ants
are recruited to the food, and as more ants are
recruited the rate of recruitment increases further.
Similar positive feedback loops are also seen in the
recruitment dance of the honey bee (Seeley et al. 1991;
Seeley 1995), the construction of termite mounds
(Bonabeau et al. 1998) and cemetery building by
Messor sancta ants (Theraulaz et al. 2002). In each of
these cases, the mechanism for recruitment is different
but the same pattern of rapid amplification of some
initial event is seen. Positive feedback is not limited to
social insects, where there are high levels of genetic
relatedness and thus co-operation between the colony
members, but is also observed within groups of
unrelated animals. For example, cockroaches rest for
longer periods under shelters with more cockroaches

http://rstb.royalsocietypublishing.org/
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Figure 2. Couzin et al. (2002) model of fish dynamics. (a) Illustration of the rules governing an individual in the fish model. The
individual is centred at the origin: zor, zone of repulsion; zoo, zone of orientation; zoa, zone of attraction. The possible ‘blind
volume’ behind an individual is also shown, a, field of perception. Collective behaviours exhibited by the model: (b) swarm, (c)
torus and (d ) dynamic parallel group.
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leading to aggregation (Ame et al. 2004) and
solitarious locusts are excited through multiple con-
tacts with other solitarious locusts leading to gregar-
ization and collective migration (see figure 1e; Collett
et al. 1998; Simpson et al. 2001).
(b) Flocks, schools and crowds

Some of the most mesmerizing examples of collective
behaviour of animal groups can be seen overhead every
day. V-shaped formations of migrating geese, starlings
dancing in the evening sky and hungry seagulls
swarming over a fish market, are just some of the
wide variety of shapes formed by bird flocks. Fish
schools also come in many different shapes and sizes:
stationary swarms; predator avoiding vacuoles and
flash expansions; hourglasses and vortices; highly
aligned cruising parabolas, herds and balls (Partridge
1982; Partridge et al. 1983; Parrish et al. 2002). These
shapes are often seen on a scale that far exceeds the size
or even the range of interaction of individual fish.
Herring schools can consist of more than 5000
individuals spread over 700 m2 (Mackinson 1999).

Despite the variety of shapes and motions of animal
groups it is possible that many of the different collective
patterns are generated by small variations in the rules
followed by individual group members. Several authors
have developed computer simulation models, known as
self-propelled particle (SPP) models, that attempt to
Phil. Trans. R. Soc. B (2006)
capture the collective behaviour of animal groups in

terms of the interactions between group members
(Okubo 1986; Reynolds 1987; Gueron et al. 1996;

Czirok & Vicsek 2000). For example, Couzin et al.
(2002) proposed a model in which individual animals

follow three simple rules of thumb: (i) move away from
very nearby neighbours; (ii) adopt the same direction as

those that are close by and (iii) avoid becoming
isolated. Each individual thus has three zones—

repulsion, alignment and attraction—which increase

in size, so that individuals are attracted to neighbours
over a larger range than they align, but decrease in

priority, so that an individual would always move away
from neighbours in the repulsion zone (figure 2a).

Keeping the repulsion and attraction radii constant,
Couzin et al. (2002) found that as the alignment radius

increased, individuals would go from a loosely packed
stationary swarm (figure 2b), to a torus where

individuals circle round their centre of mass
(figures 1a and 2c) and, finally, to a parallel group

moving in a common direction (figure 2d ). Far from

requiring a distinct set of behaviours, these three very
different collective patterns self-organize in response to

a small adjustments to one factor: the radius over which
individuals align with each other (Couzin & Krause

2003). Hoare et al. (2004) later used a similar model to
explain the group size distribution they observed in

laboratory experiments.

http://rstb.royalsocietypublishing.org/
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Figure 3. The emergence of synchronized clapping (from Neda et al. 2000a,b). (a) The average noise intensity of a crowd
through time. The first 10 s shows unsynchronized fast clapping, followed by a change to regular slower clapping until around
27 s, followed by synchronized clapping again. (b) A normalized histogram of clapping frequencies for 73 high school students
(isolated from each other) for Mode I (solid) and Mode II (dashed) clapping.
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If the complex patterns produced by animal groups
can be explained in terms of a few simple rules, is it
possible to use simulation models to predict and even
control the behaviour of human crowds? Helbing et al.
(2000) proposed a simulation model for pedestrians
attempting to escape life-threatening situations
through a limited number of exits. They assumed
that, in such a situation pedestrians’ behaviour is
limited to following a few simple rules: try to minimize
travel time, avoid collisions with walls and move in the
direction of other people. Tragically, these natural
behaviours are also those which lead to increased
blockages and decreased probability of escape. Helbing
et al. (2000) were also able to show that widening
corridors could actually lead to slower collective
motion, because pedestrians at the end of the widening
slow down traffic by trying to squeeze back in to the
main flow. Helbing’s modelling approach has been
usefully applied in understanding: why pedestrians
walking on a busy street form bands moving in
alternative directions (Milgram & Toch 1969; Helbing
& Molnar 1995), the speed of Mexican waves in
football stadiums (see figure 1e; Farkas et al. 2002,
2003); as well as the formation of traffic jams (Helbing
& Huberman 1998; Helbing & Treiber 1998). These
models, which treat humans as particles that interact
according to a set of ‘social forces’, have been
remarkably successful in predicting the shape and
dynamics of crowds.
(c) Audience applause

After any good concert performance, audiences express
their appreciation by a loud round of applause. In
Eastern Europe and Scandinavia this applause is often
rhythmical, with the entire audience clapping simul-
taneously and periodically. Neda et al. (2000a,b)
recorded and analysed the clapping of theatre and
opera audiences in Romania and Hungary and found a
Phil. Trans. R. Soc. B (2006)
common pattern: first an initial phase of incoherent but
loud clapping, followed by a relatively sudden jump
into synchronized clapping that, after about half a
minute, was again rapidly replaced by unsynchronized
applause (figure 3a). A surprising observation was that
the average volume of the synchronized clapping is
lower than that of unsynchronized applause, both
before and after the synchronized bouts. While an
audience presumably wants to maximize their volume
and thus their appreciation of the performance, they
are unable to combine louder volumes with synchro-
nized clapping.

Neda et al. (2000a,b) went on to record small local
groups in the audience and asked individuals, isolated
in a room, to clap as if (I) ‘at the end of a good
performance’ or (II) ‘during rhythmic applause’. Both
modes of clapping were rhythmical at the individual
level, with individuals clapping in mode I twice as fast
as those clapping in mode II (figure 3b). The important
difference was in the between individual variation for
the two modes. When asked to clap rhythmically,
isolated individuals chose similar, though not precisely
identical, clapping frequencies, while when given the
freedom to applaud spontaneously the chosen frequen-
cies spread over a much wider range.

To interpret this observation, Neda et al. (2000a,b)
used a classical mathematical result about coupled
oscillators. Kuramoto (1975) showed that if a large
number of oscillators, for example pendulums hanging
on a wall, each with its own frequency, are coupled
together so that they continually adjust their frequency
to be nearer that of the average frequency, then
provided the oscillators’ initial frequencies are not too
different they will eventually adopt the same frequency
and oscillate synchronously (Kuramoto 1984). This is
what happens to audiences clapping according to mode
II. Their initial independent clapping frequencies are
close together, and by listening to the clapping of

http://rstb.royalsocietypublishing.org/
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Figure 4. How different systems increase output as a function of number of system components. (a) A linear increase in system
output with number of components. (b) Model prediction of how the number of foragers visiting a feeder changes with number
of ants in the colony. The black line is the predicted stable equilibrium for number of foragers visiting the feeder. The grey line is
the unstable equilibrium. If fewer ants than the unstable equilibrium initially discover the source, then the total increase in
foragers will be determined by the lower stable equilibrium. However, if the initial discovery is by a larger group than the
unstable equilibrium, then the increase will be to the upper equilibrium. The model for the rate of change of ants going to the
feeder, x, is dx=dtZaxCbxðnKxÞKsx=ðsCxÞ: The figure shows the equilibrium solutions for parameter values: aZ0.004 5,
bZ0.000 15, sZ10 and n, the total number of ants, varied between 0 and 65 (see Beekman et al. 2001 for details). (c) Colony
size versus the maximum increase in the number of ants walking to a feeder within 40 min of its introduction to an arena
containing a starved ant colony (see Beekman et al. 2001 for details). The solid line connects the means of all trials at a given
colony size, while crosses represent single trials.
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others, they synchronize their clapping. Audiences
clapping in mode I, however, have initial clapping
frequencies which are less similar to each other. Thus,
even if they try to adjust their clapping in reaction to the
sound around them, the Kuramoto model predicts that
they will never arrive at a state of synchronized
clapping. This is exactly what happened in the
audiences that were recorded: faster clapping, with
greater inter-individual variation never synchronized.
Theatre audiences are thus forced to choose between
two different manners of showing their appreciation:
loud, frequent, unsynchronized or quieter, less fre-
quent, synchronized clapping.

Synchronized rhythmic activity is seen in many
different animal groups and across all of biology
(Strogatz 2003). For example, Leptothorax ants syn-
chronize their bouts of activity (Franks et al. 1990; Cole
1991; Boi et al. 1999), human females’ menstrual
cycles become synchronized when living or working
closely together (Stern & McClintock 1998) and,
probably the best studied example, fireflies synchronize
their flashing (Buck & Buck 1976). The importance of
Kuramoto’s model is that it shows that individuals with
slightly different frequencies can synchronize, each by
moving their frequency slightly towards the average.
Phil. Trans. R. Soc. B (2006)
This observation is by no means obvious, and the

prediction that above some critical amount of between-

individual variation synchronization cannot occur has

wide ranging implications. For fireflies, the prediction

is that species that do not synchronize their flashing will

have higher between-individual variation, and possibly

more rapid flashing.
3. PROPERTIES OF SELF-ORGANIZATION
Beyond the fact that individuals produce collective

patterns, is there anything more specific we can say

about these phenomena we have labelled self-orga-

nized? The answer to this question lies in the

relationship between similarities in the rules governing

and the patterns generated by very different systems.

Opera audiences and groups of fireflies are different in

shape and size, method of communication and their

objectives, but both are restricted by inter-individual

differences when trying to synchronize their actions.

Birds fly, fish swim and pedestrians walk, but they all

exhibit the tendency to move away from those that are

too close while avoiding being left completely out on

their own. These simple rules result in similar patterns

http://rstb.royalsocietypublishing.org/
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of aggregation and directed movement, independent of
the details of the animals involved.

If we are to build a useful theory of self-organization
of animal groups it is not enough to say that certain
things ‘look’ similar. In the above examples, the aspect
that links different systems together is similarity in the
mathematical models we used to describe their
behaviour. For pheromone trails, cockroach shelter
choice and ant cemeteries, mechanisms of positive and
negative feedback produced aggregations and collective
decisions; for oscillating fireflies and hand clapping, the
Kuramoto model of coupled oscillators provided
understanding of the role of variation in synchroniza-
tion; and the dynamics of fish schools and human
crowds were all captured by SPP models. If the same
mathematical model captures the behaviour of different
systems then we can talk about similarities between
systems that go further than simple analogy. We can use
our mathematical models to make predictions that
apply to many different systems. Furthermore, if two
systems obey the same mathematical laws, we can
perform experiments on one system and infer how
another system might behave under similar conditions.

(a) More than the sum of its parts

A concrete example of a mathematical prediction that
spans all systems subject to positive feedback is that
these systems are ‘more than the sum of their parts’
(Aristotle, Metaphysica, 10f–1045a). That is to say that
when we plot system ‘output’ against number of system
components we do not get a straight line (figure 4). For
example, if an ant in a small colony finds a food source
a long way from the nest, then by the time another ant
passes over the place she left a pheromone trail, the
pheromone will probably have evaporated. In this case,
the trail does not help other ants find the food. For large
colonies of ants, however, it is more likely that an ant
will cross the pheromone trail before it evaporates and
reinforce it. The reinforcement leads to the familiar
positive feedback loop and a well-established trail
between nest and food. Thus, the output of the system,
i.e. number of ants visiting the feeder and hence food
collected, is low for small ant colonies but rapidly
increases as the colony becomes larger.

Beekman et al. (2001) formalized this verbal
argument in a mathematical model of trail laying. The
model predicted that (a) as the number of ants in the
colony increased the number of ants visiting the feeder
would increase nonlinearly and (b) provided the rate at
which ants found the food without following a trail was
small, then at a critical colony size there would be a
sudden switch from few ants visiting the feeder to a large
proportion of the ants visiting the feeder (figure 4b).
Both these predictions were confirmed experimentally
(figure 4c). Small colonies were unable to establish an
effective pheromone trail, while above a critical size, in
this case 700 ants, trails were formed between nest and
food. In small groups the ant colony was merely a sum of
its parts, the amount of food collected being a total of
that collected by ants that discovered food indepen-
dently. But together, in large numbers, the positive
feedback of pheromone communication meant a jump
in efficiency that made the colony more than the sum of
independently working ants.
Phil. Trans. R. Soc. B (2006)
We can also think of bird flocks and other animal
herds as being more than the sum of their parts. Using a
simple SPP model, Czirok et al. (1999) showed that a
group of individuals that align their direction with that
of their neighbours undergo a rapid transition from
random motion at low densities, where each individual
moves largely independently of the others, to directed
motion at high densities where all individuals move in a
common direction. We can think of the output of the
flock to be a common direction, e.g. a shared migration
route, and as the flock’s density increases there is a
continuous, but rapid nonlinear change to having a
shared direction. More recently, it has been shown that
under some conditions the transition from random to a
common direction can be discontinuous, as it was for
ant foraging (Gregoire et al. 2003; Gregoire & Chate
2004).

(b) The central limit theorem

Not all of the collective patterns produced by animal
groups are more than the sum of their parts. Symmetri-
cal structures, such as the domes built by wood ants or
the craters built by M. barbarus ants (Chretien 1996;
Theraulaz et al. 2003), can result from the independent
actions of the colony’s ants (figure 1b). For example,
Chretien (1996) showed that when an individual
M. barbarus ant leaves the nest hole with a sand pellet,
she moves in a straight line away from the hole in a
random direction. Once the ant is, on average, 4.8 cm
from the hole she drops the pellet. The fact that the
direction chosen by the ant is independent of the
direction taken by the other ants in the colony produces
a symmetrical crater. The height of this crater, which
here can be considered the output of the colony, is
proportional to the number of building ants (as in
figure 4a). It is purely the sum of the parts that created it.

The fact that the crater wall is equally high on all
sides of the ants’ nest entrance is a consequence of a
remarkable mathematical theorem that applies to all
systems consisting of large numbers of independent
individuals: the central limit theorem. The theorem
states that if each of a large number of independent
individuals contributes a small randomly distributed
quantity to some total output, then that total output is
distributed according to a Normal distribution. More-
over, the standard deviation of total output increases in
proportion to the square root of the number of
individuals. Since the height of the ants’ wall increases
in proportion to the number of individuals and, by the
central limit theorem the standard deviation around the
wall increases as its square root, once the wall is
reasonably high the variation in its height will be small
relative to its average height. Thus, despite, and indeed
because of, the ants working independently an even
outer wall is constructed.

The central limit theorem is the most basic
statement about and the cornerstone for understanding
all collective phenomena. It proves that systems
consisting of independent parts are ‘usually’ no more
than a square root of the number of parts more or less
than the sum of their parts. The Normal distribution is
universal, in the sense that all systems consisting of
independent parts are subject to it. It thus provides a
null hypothesis against which all data taken from
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Figure 5. Distribution of the proportion of individuals
choosing one of two identical options in binary choice
experiments where (a) Pharoah’s ant are offered two identical
(1.0 M sugar solution) food sources (reproduced from
Sumpter & Beekman 2003) and (b) cockroaches are offered
two identical shelters (reproduced from Ame et al. 2004).
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systems purporting to exhibit some kind of feedback or
self-organization can be compared. Indeed, in this
sense all self-organized systems can be explained in
terms of the manner in which their output deviate from
a Normal distribution (Sornette 2004).
(c) Sensitivity to initial conditions

M. barbarus’ crater is not particularly sensitive to the
distribution of sand before building begins. If a small
pile of sand was put on one side of the nest hole, this
pile would grow at the same rate as all other sides of the
crater. Once the walls of the crater had grown, the
initial difference may remain but look small relative to
the total height of the surrounding walls. Such
insensitivity to initial distribution is not the case for
ant trails. For example, Beckers et al. (1992) repeated
their bridge experiments described earlier, this time
starting with only the longer bridge (28 cm between
nest and food) available. Once the ants established a
trail on this bridge a shorter bridge (14 cm) was
introduced. However, the established feedback on the
longer bridge was so strong, that in 16 out of 20 trials
the ants did not switch to the shorter bridge. Strong
positive feedback had locked the ant in a suboptimal
path choice.

A standard test for whether a particular collective
animal behaviour is sensitive to initial conditions is the
identical binary choice experiment. In the absence of
positive feedback we would expect a 50 : 50 split
between two equal alternatives. This does not occur
for systems subject to positive feedback. When Beckers
Phil. Trans. R. Soc. B (2006)
et al. (1992) offered Lasius niger ants two identical
bridges between food and nest, after 30 min the
majority of the ants took only one of the two bridges.
Sumpter & Beekman (2003) reported similar results
for Pharaoh’s ants when they offered the ants two
identical feeders in opposite directions from the nest.
Instead of a 50 : 50 split between feeders, the split was
closer to 70 : 30 or 30 : 70, giving a u-shaped
distribution of number of ants at one of the feeders
over all the trials (figure 5a). The ‘winning’ feeder was
the one that had the most ants nearby when it was
initially placed in the foraging arena.

Similar results have been observed from cockroaches
to consumers. For the cockroach, Blattella germanica,
the positive feedback mechanism for aggregation is
resting time: cockroaches rest for longer at sites
containing more cockroaches (Ame et al. 2004; Jeanson
et al. 2005). The result is the same as for the ants, a
u-shaped distribution of shelter choice (figure 5b). This
same resting time feedback operates in spiders
( Jeanson et al. 2004) as well as chain formation by
weaver ants (Deneubourg et al. 2002). It has been
argued that similar patterns are seen in consumer
choice (Ormerod 1998). When two similar products
are released on the market, such as Betamax and VHS
video recorders in the 1980s, after a short period of
both products being used, one of them often out-
competes the other. Fashion and group pressure could
provide a powerful positive feedback mechanism
whereby small differences in products are amplified as
the herd of consumers follow the initial choices of a few
individuals.
4. INDIVIDUAL VERSUS GROUP COMPLEXITY
The examples of self-organization I have discussed so
far illustrate how, for various types of interaction
between individuals, we can use mathematical models
to predict complex group level patterns of behaviour.
Similarities and differences in the mathematical models
applied to these systems were helpful in drawing useful
comparisons between the systems themselves. I have
even outlined some useful and general predictions
about these systems: that if the system consists of
independent units its output will be normally dis-
tributed, that if the units are subject to positive
feedback the systems output will be ‘more than the
sum of its parts’ and strongly subject to its initial
configuration. It may appear now that, through this
wonderful theory of self-organization and mathemat-
ical modelling, we are well on our way to fully
understanding and determining relationships between
everything from the foraging of ant colonies to
consumer behaviour in our own society.

Unfortunately, such understanding is all too far
away. Unlike the simple units composing physical
systems, animals are complex entities. While the
assumption that humans follow a simple set of rules
may hold in certain limited social situations—such as
after a concert, in a panic or when queuing for coffee—
in a wider social context, each individual’s behaviour is
a combination of countless genetic and environmental
factors. The same is true for other mammals, birds, fish
and even insects. For example, individual honey bees
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are known to use at least 17 different communication
signals, the most famous of which is the waggle dance,
and adjust their behaviour in response to at least 34
different cues (reviewed in Seeley 1998). While
foraging for food, honey bees exhibit at least seven
different behavioural states, e.g. scout, recruit, inspec-
tor etc. (see figure 6b; reviewed in Biesmeijer & de Vries
2001), and exhibit a range of signals about the location
and availability of food (Seeley 1995).

While studies of self-organization have shown that
simple interacting units can become more than the sum
of their parts and self-organize (Bonabeau et al. 1997;
Camazine et al. 2001) and that they sometimes follow
‘simple rules of thumb’ (figure 6a; see also Detrain &
Deneubourg 1997; Detrain et al. 1999; Detrain &
Deneubourg 2002), this does not necessarily imply that
individual social insects are simple units (Seeley 2002).
There is evidence that only ant species with large
colonies use pheromone trails for communicating the
presence of food (Beckers et al. 1989), but there is little
evidence from between species comparison that
individual complexity decreases with increased colony
size (Anderson & McShea 2001). Honey bees are just
one example of species with both large colony sizes and
individuals that exhibit a complicated array of com-
munication signals and behavioural states (figure 6b).
Even the humble Pharoah’s ant, with its exclusive
reliance on pheromones for recruiting to food, and the
subject of Beekman et al. (2001) colony size study, has
been shown to use at least three different pheromone
signals to organize traffic on its trails ( Jackson et al.
2004; Jackson et al. in press; Duncan Jackson & Elva
Robinson personal communication). Thus, self-organ-
ization gives us, through mathematical models, a
means of predicting the consequences of certain
interactions between individuals, but it is by no
means an exclusive principle by which insect societies
are organized.

One example of a collective behaviour that has been
extensively studied from the viewpoint of both
individual and group level complexity is the emigration
of ants of the genus Temnothorax (Möglich 1978;
Mallon et al. 2001; Pratt 2005, in press; Pratt et al.
2002, 2005). These ants, whose colonies consist of
between 50 and 500 individuals, live in small
preformed cavities. In the laboratory, a colony whose
nest has been damaged moves to a new site within a few
hours, reliably choosing the best site from as many as
five alternatives, discriminating among sites according
to cavity area and height, entrance size, and light level
(Pratt & Pierce 2001; Franks et al. 2003a,b). Around
30% of the ants actively partake in the process of
choosing a new nest site. These active ants undergo
four phases of graded commitment to a particular nest
site (figure 6c). Each ant begins in an exploration phase
during which she searches for nest sites. Once she finds
a site she enters an assessment phase, carrying out an
independent evaluation of the site, the length of the
evaluation being inversely proportional to the quality of
the site (Mallon et al. 2001). Once she has accepted the
site she enters a canvassing phase, whereby she leads
tandem runs, in which a single follower is slowly led
from the old nest to the new site. These recruited ants
then in turn make their own independent assessments
Phil. Trans. R. Soc. B (2006)
of the nest. Once the nest population has reached a
quorum (a threshold population), the ant enters a
committed phase, rapidly transporting passive adults
and brood items.

Like the self-organized systems discussed earlier, the
collective ability to choose the best of several new nest
sites does not rely on one ant possessing information on
more than a small part of the colony’s task. Tandem run
recruitment also has elements of the simple positive
feedback seen in the pheromone trails of Lasius ants
and the aggregation of cockroaches. However, the four
phase decision-making process, the use of a quorum
threshold to decide whether to perform a tandem runs
or a transport (Pratt 2005, in press; Pratt et al. 2002),
and the fact that some ants find both nests and choose
the superior one (Mallon et al. 2001), makes the
behaviour of individual migrating ants more compli-
cated than ‘simple rules of thumb’. Temnothorax ants
combine elements of self-organization, whereby a
global solution to the problem of finding a new nest
emerges from the interactions of the multiple ants, with
a sophisticated behavioural algorithm, whereby indi-
vidual ants continually monitor the progress of the
emigration and change their behaviour accordingly.

The detailed experimental understanding of Tem-
nothorax migration has made it possible to determine
the behavioural algorithm followed by, and the
communication pathways between the ants. Pratt et al.
(2002, 2005) have, as new experimental data have
become available, systematically refined this beha-
vioural algorithm in order to capture everything that is
known about ant migration in a model (figure 6c). Their
approach follows that used in modelling gene regulatory
(von Dassow et al. 2000) and other complex networks
(Kitano 2002). Once the behavioural algorithm is
developed, the role of its various components can be
tested. For example, Pratt et al. (2002) showed that the
requirement that the nest site population reaches
quorum before transport commences leads to a
reduction in incidence of colony splitting. Franks et al.
(2003a,b) went on to show experimentally that the ants
reduce the size of their quorum in situations where
migration speed takes priority over the avoidance of
splitting. Detailed behavioural algorithm models are
thus a tool for reconciling individual and group level
complexity, allowing for meaningful analysis of how
each part of the algorithm contributes to overall system
function (Fewell 2003).

The construction of detailed models of the algor-
ithms followed by individuals also allows for between
species comparison. For example, Camazine et al.
(1999), Seeley & Buhrman (2001), Seeley (2003) and
Seeley & Visscher (2003) have studied the migration of
honey bees and found that they use a similar
combination of positive feedback (dancing instead of
tandem running) and quorum thresholds (Seeley &
Visscher 2004) as Temnothorax. When algorithms are
similar across very different species we can ask why they
have evolved in so many different cases. What is it about
the combination of positive feedback and response
thresholds that produces effective collective decision
making? The power of the behavioural algorithm
approach is that the algorithm can be analysed and
compared across systems. Indeed, rather than simply
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Figure 6. Algorithms for social insect behaviour. (a) The ‘simple rule of thumb’ used by Lasius niger ants when exploiting liquid
food sources (Detrain & Deneubourg 2002; from results of Mailleux et al. 2000). (b) Behaviour control structure of a honey bee
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simulating algorithms in order to reproduce exper-
iments, the algorithms can be studied to find out the
principles that underlie them.

Before leaving the subject of individual complexity it
is worth pointing out that, when viewed at certain
spatial and temporal scales, very complex individuals
can produce very simple group level dynamics,
provided they exhibit a reasonable degree of indepen-
dence. For example, though a highly complex algor-
ithm may have brought each individual to town in the
first place, the number of people passing by a point on a
quiet shopping street during a 5 min interval is likely to
be randomly distributed. This prediction is based on
the ‘law of small numbers’, that independent low
frequency events in a large population follow a Poisson
distribution (Bortkiewicz 1898). While on very small
time scales there are socially enforced gaps between
people and on very large time scales there are patterns
determined by shops opening and closing, on the time
scale of an hour on a Monday morning passers-by do so
more or less at random. Once a large number of factors
Phil. Trans. R. Soc. B (2006)
begin to influence behaviour, the complex begins to

seem simple again.
5. PRINCIPLES OF COLLECTIVE BEHAVIOUR
As far as understanding collective animal behaviour I

have come full circle. First, I marvelled at the

wonderful patterns produced by animal groups, then

showed that some of these patterns could be explained

by simple mathematical models, but found myself back

at the beginning when we discovered the true complex-

ity of the individuals and the need for detailed

behavioural algorithms. These algorithms appear no

easier to understand than the phenomena they purport

to model and lack the elegance provided by self-

organization. There were, however, points on this

journey where it felt like progress was made: when

completely different systems seemed to be logically

equivalent and were given a new explanation by the

application of a mathematical model.
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Similarities between the logical structure underlying
different systems have led researchers to dream of a
unifying theory for the study of complex and self-
organized systems. The dream is to develop some sort
of ultracalculus, a way of seeing clearly the conse-
quences of a myriad of complex interactions (Strogatz
2003). Currently, the only universal theorem of this
type is the central limit theorem, but it is precisely those
systems consisting of non-independent individuals that
our ultracalculus should apply to. For Nicolis and
Prigogine the unifying theory was the thermodynamics
of open systems; for Bak (1996) it was self-organized
criticality and sand piles; for Sornette (2004) it is the
generalization of the normal distribution to power law
distributions; for Kauffman (1993) it is Boolean
networks; and for Wolfram (2002) it is cellular
automata. Elegant as these mathematical ideas are,
none of them have proved truly universal, and more
importantly, nor have they been shown to apply to large
numbers of biological systems. Experimental tests of
these theories are few and far between.

My personal view is more pragmatic than the
development of a universal theory or an ultracalculus
of self-organization. Studying systems of collective
animal behaviour should proceed on a case-by-case
basis. For each particular system, we classify how
individuals interact with each other and build beha-
vioural algorithms based on these observations. The
behavioural algorithms are then the basis for math-
ematical models. If a similar mathematical model has
been previously applied to another system, this helps us
understand the behavioural algorithm and thus the
system, but the equivalence of mathematical models
alone should not guide the way in which we study our
chosen system. Through this approach, mathematical
models become a tool for investigating natural systems
and the fact that the same model is applicable to many
different systems is a happy co-incidence rather than a
proof of universal laws.

The pragmatic approach does not deny that there
are strong similarities between very different systems.
On the contrary, it is essential to such an approach that
systems are classified in terms of their logical or
mathematical similarities and differences. The
approach I take now is to list some of the principles
for the behavioural algorithms that produce collective
animal behaviour. This approach builds on the idea of
self-organization that many of an animal group’s
activities can be described in terms of three principles:
positive feedback, negative feedback and the amplifi-
cation of random fluctuations (Bonabeau 1997;
Camazine et al. 2001). Here, I add to this list the
principles of individual integrity; response thresholds;
leadership; inhibition; redundancy; synchronization
and selfishness. My current list is not intended as
exhaustive, but it does include many commonly
observed features of collective animal behaviour. The
ultimate aim is to find a set of principles on which the
behavioural algorithms followed by individuals are
built. These principles should be both empirical, i.e.
describe behaviour that really does occur, and suffi-
ciently abstract that mathematical models based on
these principles can be developed and studied in a way
that leads to insight into a number of different systems.
Phil. Trans. R. Soc. B (2006)
Bearing in mind that individuals do not follow only
simple rules, it is important that we do not think of
these principles in isolation. Indeed, we should
consider how these different principles interact with
each other to produce collective patterns. For example,
how does individual integrity mix with positive feed-
back in allowing information about food sources to flow
quickly through a honey bee colony without the colony
losing the ability to discover new sources? Or, how can
synchronization of mating fireflys occur when it is to
the advantage of one firefly to cheat by flashing faster
than the others? Many of the big questions for the
future of collective animal behaviour concern how
these principles fit together to generate complex
collective patterns.

(a) Integrity and variability

Each of the animals in a group is different, in terms of
their genes and/or their previous experience. For
example, if every bee always collected the same type
of food from the same place then their colony’s
nutritional needs could not be met. Worse still, when
the uniquely selected food source is depleted, flow of
food into the colony stops until the next food source is
found. Such a situation is avoided in honey bee colonies
by a high degree of individual variation. From only one
week old, before they have left the hive for the first time,
honey bees have different levels of response to sucrose,
which later in life determines their propensity to collect
water, nectar and pollen (Pankiw & Page 2000). Honey
bees and other social insects are highly variable in the
direction, intensity and focus of food collection and
other tasks ( Jeanne 1988). Sometimes this variability
alone is sufficient to produce collective patterns. For
example, the circular structure of M. barbarus craters
was due to each individual choosing a random direction
by which to leave the nest. Even when not all activities
are carried out independently, individual variability is
of central importance to ensuring that different
solutions to a problem are explored.

The importance of individual variability in human
society is highlighted by an observation by Galton
(1907). He examined 800 entries into a ‘guess the
weight of the ox competition’, where a crowd of
fairgoers each paid a small amount to guess how
much a large ox would weigh after slaughter, with the
most accurate guess winning a prize. Although the
guesses had a wide variation, differing significantly
from a Normal distribution, the average guess was only
1 pound (450 g) less than the 1197 pounds (544.5 kg)
that the ox weighed. Acting independently, the crowd
‘knew’ the weight of the ox. There are many such
examples of collective accuracy: ask the audience on
‘Who wants to be a millionaire’; the accurate prediction
of American presidential elections by betting; and the
Google search engine using links to a webpage to
measure its popularity are just some (Surowiecki
2004). In all animal groups, high inter-individual
variation can provide a continual supply of new
solutions to the problems the group aims to solve.

(b) Positive feedback

Positive feedback is the amplification of events through
recruitment or reinforcement (Bonabeau et al. 1997;
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Figure 7. Examples of response thresholds. (a) The probability of a recruiting Temnothorax albipennis ant performing a transport
rather than a tandem run, as a function of the mean nest population (N ) of the destination site on her immediately previous
visit there (data from Pratt 2005, in press). The fitted line is N6:3=ð20:26:3CN6:3Þ. (b) The mean proportion of passer-by’s
looking up as a function of the size of a group (C ) of people stood in the street looking up at a sixth floor window (taken from
Milgram 1992). Fitted line is 0:92!C1:04=ð1:221:04CC1:04Þ, giving a threshold of 1.22. (c) The probability of a cockroach
leaving a shelter as a function of the number of other cockroaches (C) on the site (taken from Ame et al. 2004). Fitted line is
0:06!1=ð6CC2Þ. (d ) The probability per second of an ant moving away from a stopped group of ants as a function of the
number of stopped ants (A; taken from Depickere et al. 2004). Fitted line is 0:35AK2:125.
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Camazine et al. 2001). A cockroach stops in a shelter,

another one pauses nearby. An ant finds a food source,

another one follows her trail there. A fish turns to the

left, its neighbour follows soon after. A few people

recommend a particular brand of video recorder,

others go out and buy it. As such imitation or

recruitment behaviour continues the number perform-

ing an activity explodes exponentially. An isolated

behaviour is quickly subsumed by a mass of similar

behaviours. Positive feedback is the best studied

component of collective animal behaviour and we

have already discussed many of the collective patterns it

can produce.

While individual integrity generates new group level

solutions, positive feedback spreads this information

quickly through the group. For example, an ant finding

a food source relies on the particular search path of that

ant, but the trail it leaves on the way home is the start of

a positive feedback loop that homogenizes the beha-

viour of those following the trail. Followers submit their

own integrity to the discoveries of others. Too much

positive feedback can lead to suboptimal solutions

when conditions change, such as when ants stick to an

established a trail even when a shortcut is introduced

(Beckers et al. 1992). Successful problem solving by

collective behaviour often involves striking the correct

balance between individual variation and positive
Phil. Trans. R. Soc. B (2006)
feedback. Information should spread but also be kept
up to date by new discoveries.
(c) Negative feedback

If positive feedback builds up a collective pattern then it
is negative feedback that stabilizes it. For example,
once lots of ants are collecting from a food source, new
arrivals will find it hard to collect food and search
elsewhere. Even if the food source is unlimited, the
colony is of limited size and the number of ants visiting
the feeder will stabilize once every available foraging
ant is collecting food. Negative feedback leads to
homeostasis, stable output in the face of varied input.
For the ants, changes in food distribution leads to a
smooth adjustment of the distribution of ants between
food sources.
(d) Response thresholds

Animals often change their behaviour in response to a
stimulus reaching some threshold. For example,
bumble bees begin fanning (to cool down the nest)
when the temperature concentration inside the nest
exceeds a particular threshold level, this level of
fanning often being variable between individuals
(Weidenmuller 2004). Threshold responses are also
seen in between individual interactions. Figure 7 gives
four examples of response thresholds where the
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stimulus is other individuals. For Temnothorax ants the
stimulus is the density of ants within a nest cavity
(figure 7a). When the density reaches at least 20.2 ants
in a 24 cm2 nest, the ants switch from tandem run
recruitment to transporting (Pratt 2005, in press). In
this sense the response threshold acts as a quorum;
above the quorum a more rapid form of recruitment
begins (Pratt et al. 2002).

Milgram et al. (1969), reported in Milgram (1992),
planted a stimulus group of people, all of whom looked
up at a supposed point of interest on the pavement on a
busy street. The proportion of naı̈ve passers-by who
looked up at the point was then observed as a function
of the size of the stimulus group (figure 7b). The
proportion of those looking up increased as a function
of group size in a form similar to that seen in the
response of the ants to nest mates. The larger the group
the larger the probability of stopping. The same
behaviour is observed in ants (figure 7c) and cock-
roaches (figure 7d ). In these cases the amount of time
spent sitting still increases as a threshold like function
of group size. In all these cases, response thresholds can
interact with positive feedback to generate local
aggregations. If only one person stops in the street
there is only a 40% chance of another following their
gaze and a group is unlikely to build up. If by chance
five people stop and look up then the probability
increases to 80% and the group has a higher probability
of becoming stable, even in the absence of any true
stimulus.

(e) Leadership
The notion of self-organization seems somehow
incompatible with the notion of leadership. In insect
societies, however, there are some key individuals that
catalyse and organize the group (Robson & Traniello
1999). A classic example of catalyst behaviour is the
shaking signal in honey bees. When foraging begins in
the morning some of the first foraging bees to find food
shake the other bees deep in the hive (Seeley 1995),
serving to inform those bees that a period of greater
activity is about to begin (Seeley et al. 1998). The
distribution of number of shaking signal bouts across
individual bees during their lifetime is highly skewed,
indicating that it is certain bees that act as catalysts
(Biesmeijer 2003). Often leadership is assumed by the
possession of particular information. In fish, a small
number of informed individuals can lead the migration
of larger numbers of individuals (Reebs 2000). Couzin
et al. (2005) used an SPP model to show that the larger
the group, the smaller the proportion of informed
individuals required to lead it. This result relies on the
fact that followers are subject to positive feedback. As a
few individuals follow a leader, other individuals follow
these followers and the group takes a single direction.
Rather than being opposites, self-organized positive
feedback and leadership are instead powerfully com-
bined to produce co-ordinated collective migration.

(f) Inhibition
Members of a group exhibiting one type of behaviour
can inhibit the behaviour of others. When this
inhibition is passive it is indistinguishable from negative
feedback. For example, as ants are recruited to one
Phil. Trans. R. Soc. B (2006)
food source the number available to visit another is
reduced. Inhibition can also be active, whereby
members of one group actively try to reduce another
type of behaviour. For example, when choosing a new
nest Temnothorax albipenis ants who have begun
transporting to one nest site will, if they encounter an
alternative nest site that they rank as inferior, begin
transporting away from that nest to the nest they first
transported to (Mallon et al. 2001; Pratt et al. 2002). If,
as often happens during Temnothorax emigrations,
transport begins to more than one potential nest site,
these between site transports provide between site
inhibition. Transports away from a potential nest
site will reduce the population and the probability the
nest will reach quorum, and thus the incidence of
splitting between nest sites.

(g) Redundancy

Very little is known about the value of redundancy in
animal groups or even our own society, but it is often
implicated in the observation that, as Francis Ratnieks
has put it, ‘insect societies never crash’. Unlike
computers, which are constructed of many specialized
and essential components, insect societies consist, with
the possible exception of the queen, of vast numbers of
replaceable units: 20–30% of honey bee workers rest at
any one time (Seeley 1995). If one type of honey bee
workers, for example foragers, are removed, these are
rapidly replaced by a new cohort of younger bees
(Lindauer 1952). The apparent redundancy in the
system allows it to continue to function even when
faced with a major reduction in its workforce.

(h) Synchronization
Audience applause and other synchronization phenom-
ena are achieved through small adjustments by
individuals of their own frequency towards that of
some local average. Essentially, synchronization is an
example of positive feedback in time rather than space.
The coupling of synchronization in time with positive
feedback in space may have an important role in
determining the productivity of animal groups. For
example, some ant colonies synchronize bouts of
resting and activity (Cole 1991). If by all being active
at the same time the ants can disproportionably
increase their ‘output’ (as in figure 4b), then being
synchronized will see an overall increase in output
compared to constant activity levels.

(i) Selfishness
Tucked away here, as the last subheading in a section
on components of collective behaviour, is the question
that would spring to many biologists’ mind even before
I began giving different examples of collective animal
behaviour: ‘how did these collective behaviours evolve
through natural selection?’ I have made no attempt up
to now to address the problem of the ‘ultimate’ reason
for cockroach aggregation, fish schools, ant trail
networks or audience applause. In the light of my
discussion of a universal theorem this omission may be
considered neglectful. There is only one theory of
biological systems that has any claim on universality
and that is natural selection. In relation to group co-
operation, natural selection produces Hamilton’s rule:

http://rstb.royalsocietypublishing.org/


18 D. J. T. Sumpter Principles of collective animal behaviour

 on 19 November 2009rstb.royalsocietypublishing.orgDownloaded from 
the relatedness of the individual that profits from the
altruistic act of the focal individual must be higher than
the cost/benefit ratio this act imposes (Hamilton 1964).
All collective animal behaviour involves some form of
co-operation, in the sense that individuals interact to
form a pattern that is larger in scale than one
individual. Hamilton’s rule can explain many of the
sophisticated forms of co-operation that have evolved
in social insects, where inter-individual relatedness is
high (Trivers & Hare 1976; Crozier & Pamilo 1996).
Similar reasoning often explains helping behaviour in
mammals and birds (Griffin & West 2003). However,
many studies have failed to detect the levels of
relatedness predicted for highly co-operative insect
societies (reviewed by Korb & Heinze 2004), and at all
levels of biological organization helping behaviour can
be uncorrelated with relatedness (Griffin & West 2002).

In cases where collective patterns are generated by
individuals with low inter-individual relatedness, it
could be the collective properties of the animal groups
that are subject to natural selection. For example, if
working as part of a group means that the group
becomes more than the sum of its parts, then unrelated
individuals can increase their own fitness by being part
of the group. Also, genetically diverse groups may
benefit from inter-individual variability in terms
of better informed collective decisions (Fuchs &
Schade 1994; but see evidence to the contrary in
Neumann & Moritz 2000) and disease resistance (Baar
& Schmid-Hempel 1999). There is observational
evidence for such possibilities; many of the behavioural
interactions observed in ant colonies, such as positive
feedback and threshold response, are also seen in
cockroaches (Deneubourg et al. 2002) and locusts
(Simpson et al. 1999). The problem with invoking
natural selection on the collective properties of groups
is that individuals should act to maximize their own
fitness. If one individual can benefit from the other
individuals’ co-operation, without paying any cost
associated with the resulting collective pattern, then it
can pass on its genes more effectively than those paying
the cost. Ultimately, such reasoning can predict
changes in the shape or even the collapse of collective
patterns that can be exploited.

Collapse of co-operation need not always occur just
because individuals are expected to act only in pursuit
of their own reproductive interests or economic gain.
The last thirty years has seen an explosion of theories
and experimental tests of theories of why selfish
individuals ‘apparently’ co-operate: aggregations may
result from individuals attempting to put others
between themselves and danger to create a selfish
herd (Hamilton 1971) or to minimize the cost of
disintegration (Parrish & Edelstein-Keshet 1999); co-
operation can evolve where individuals interact repeat-
edly with, or are spatially located close to, each other
(Nowak & May 1992; Doebeli & Hauert 2005); and in
some cases, such as worker policing by honey bees
(Ratnieks 1988; Ratnieks & Visscher 1989), group
members actively search out and stop cheaters. In all
cases, the argument for why acting alone or cheating
does not out-compete co-operation first requires a full
understanding of the other components of collective
behaviour. Likewise, rather than being an alternative to
Phil. Trans. R. Soc. B (2006)
the mechanistic approach of studying the components
of collective behaviour, the selfishness idea provides us
with useful constraints on the possible behavioural
algorithms evolved by individuals in groups.
6. VISION OF THE FUTURE
This paper is part of a series of special issues by young
scientists looking into the future of their fields. In order
to think about the future I started by reading the books
by the pioneers of self-organization—von Bertanfly,
Weiner and Nicolis & Prigogine—to find out how they
saw the future when they first had the ideas that have
inspired our work today. What struck me most was how
much their vision for the future was also the vision for
the future that is common to all aspects of modern
biology, from post-human genome genetics to biodi-
versity. The emphasis then was on ‘systems biology’, on
understanding how different parts of biological systems
work together, moving away from reductionism and
establishing principles for biological organization. Pick
up a recent copy of Science or Nature and these same
issues fill the discussion pages. How do we integrate all
we know about the parts of biological systems to
understand how they function at a collective level?

At first thought, it sounds depressing that the vision
so many of us have for the future is the same as that of
scientists writing 30 or even 50 years ago. It appears
that the pioneers of self-organization were wrong when
they proclaimed the immediate future as a future of
‘systems biology’. Instead, biology became a field of
super-efficient stamp collecting with research projects,
most notably the genome projects, mapping out the
detailed structure of the units making up the biological
world. 30 years on we have a lot more information, but
we are only a little wiser as to how we should put it all
together. Gradually, however, we are beginning to
understand how the parts of biological systems make
up the whole. The examples I have presented here
illustrate how through a combination of mathematical
modelling, experimental manipulation and observation
we can begin to understand collective animal beha-
viour. Similar progress has been made in the study of
other complex biological systems from human organs
(Hunter & Borg 2003) to ecosystems (Levin 2000).
Often such understanding relies on technology, such as
digital tracking and computer simulations, that was not
available even 10 years ago. The technological tools
may finally be available for us to begin to disentangle
biological complexity.

So my primary vision for the future is the further use
of technology and mathematics for finally doing
‘systems biology’. We now have a large number of the
technological tools for performing data analysis and
building detailed mathematical models. The work I
have described here has applied these tools mainly to
the study of insect societies, but they can also be used to
look at locust swarms, fish schools, human crowds,
commercial farm animals and many other animal
groups. The immediate future should see greater
emphasis on application of some of the theories
developed over the last 30 years. With more appli-
cations will also come a greater pragmatism on the part
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of the theoreticians and an increased understanding of
the use of mathematics on the part of experimentalists.

I hope the term self-organized will be replaced
gradually by something akin to the principles I describe
here. Describing a system as self-organized tells us little
about how it actually works, while providing a slight
sense of mysticism. From a practical point of view it is
better to say that the behaviour of a system arises from a
particular combination of, for example, positive feed-
back, response thresholds and negative feedback. Such
description allows for more detailed between system
comparisons, not only between different types of
collective animal behaviour but across all complex
systems. In this article I have avoided using any
mathematics in the main text, but nearly all of the
systems I describe have been understood with the help
of a mathematical model of some sort. I would like to
see the development of mathematics that is appropriate
for describing different principles of collective beha-
viour, but does not insist that the whole world should fit
in to a certain type of equation. If there are so many
principles underlying collective behaviour it is unlikely
that a single formalism can describe them all. Instead,
mathematics should help us formulate and test
hypotheses, but our understanding of experimental
results should be brought together by a common non-
mathematical language.

A slightly more controversial vision I have for the
future is that the division between evolutionary biology
and mechanistic biology will narrow. At present
researchers can often be classified as looking at ‘why’
questions of the evolution of collective behaviour and
the ‘how’ questions of the way animal groups function.
This division is, however, narrowing as evolutionary
biologists become interested in how, for example,
benefits of being in a group changes with group size.
This important function in calculating optimal group
joining strategy can only be found by detailed knowl-
edge of how a group is made up of its parts. Likewise,
biologists whose interest in collective behaviour comes
from a background in mathematics or physics cannot
ignore the importance of selfishness behaviour in group
situations. The view I have taken in this article is that
the primary aim of the study of collective animal
behaviour is to determine the algorithms that produce
the collective behaviour and to understand the
principles that underlie these algorithms. Natural
selection and the ultimate reasons for and evolutionary
origin of this behaviour becomes just one of the
principles in obtaining such understanding.

If natural selection is to lose its central importance in
animal behaviour, then rationality is also to lose its grip
on the study of human behaviour. Rationality has long
been considered the null model for economics (Popper
1957), and has assumed importance in the under-
standing of how humans will behave in group
situations. Like natural selection, rationality is also
only one of the principles that govern collective
behaviour in humans (Schelling 1978; Milgram
1992). The positive feedback in consumer choice, the
synchronization of applause and the threshold response
to a crowd are also important principles. I have
endeavoured in this article to show that many collective
human behaviours are similar to their animal
Phil. Trans. R. Soc. B (2006)
counterparts. In fact, they are so similar that the
same mathematical models can be used to describe
collective patterns in both humans and animals. Such
understanding could be invaluable in designing the
spaces in which we live and work, or in developing
product advertising campaigns. It would not tell us
what it feels like to be part of a football crowd, but it
could tell us how to construct an easily evacuated
football ground. While I can never be sure what
students might talk about together after their morning
lectures, I might one day be able to predict how long
they have to queue for a cup of coffee.
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readings, and to the two reviewers for their comments. This
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